Process Mining: Converting Data from MS-Access Database to MXML Format

Anake Nammakhunt, Walisa Romsaiyud, Parham Porouhan, Wichian Premchaiswadi
Graduate School of Information Technology
Siam University
Bangkok, Thailand
anake_cc@thonburi-u.ac.th, walisar@gmail.com, pporouhan@yahoo.com, wichian@siam.edu
Abstract—ProM is a generic open-source framework for implementing process mining tools in a standard environment. The ProM framework receives as input logs in the MXML (Mining eXtensible Markup Language) and XES (eXtensible Event Stream) formats. These formats follow a specified schema definition, which means that logs do not consist of random and disorganized information; they rather contain all the elements needed by the plug-ins at a known location. In this paper, we chose PromImport as a framework to extract MXML log from the data source. The data was received in form of the Database in Microsoft Access. It contained various tables recording information about students’ registration in one of the universities in Thailand. Once the relevant data was located, the extraction and conversion sound fairly straightforward but yet the challenge was how to support event data matched with MXML format. To do this, initially, four tables with a certain structure were filled with data. Secondly a Visual Basic script was written and finally an ODBC connection with Access Database was established.
Keywords—Process Mining, MS Database, MXML, student’s registration, Visual Basic Script
I. Introduction

 Nowadays, most organizations use information systems to support the execution of their business processes. Examples of information systems supporting operational processes are Work Flow Management Systems (WMS), Customer Relationship Management (CRM) systems, Enterprise Resource Planning (ERP) systems and so on. These information systems may contain an explicit model of the processes (for instance, work flow systems like Staffware, COSA, etc.), may support the tasks involved in the process

without necessarily defining an explicit process model (for instance, ERP systems like SAP R/3), or may simply keep track (for auditing purposes) of the tasks that have been performed without providing any support for the actual execution of those tasks (for instance, custom-made information systems in hospitals). Either way, these information systems typically support logging capabilities that register what has been executed in the organization.

These produced logs usually contain data about cases (i.e. process instances) that have been executed in the organization, the times at which the tasks were executed, the persons or systems that performed these tasks, and other kinds of data. These logs are the starting point for process mining, and are usually called event logs. For instance, consider the event log in Figure 1.
 Process mining targets the automatic discovery of information from an event log. This discovered information can be used to deploy new systems that support the execution of business processes or as a feedback tool that helps in auditing, analyzing and improving already enacted business processes. The main benefit of process mining techniques is that information is objectively compiled. In other words, process mining techniques are helpful because they gather information about what is actually happening according to an event log of an organization, and not what people think that is happening in this organization.

[image: image1.jpg]
Figure 1. An example of event log (Source: Process Mining: Discovery, Conformance and Enhancement of Business Processes).
II. Prom & PromImport
 In the last 5 years, several mining tools have been developed at Eindhoven University of Technology, e.g., EMiT, Thumb, and MiSoN. These tools refer to different perspectives and use different mining techniques. However, they work on the same type of event logs and may create similar types of models. Therefore, these tools have been integrated in the ProM framework. ProM is a generic open-source framework for implementing process mining tools in a standard environment. The ProM framework receives as input logs in the XES or MXML format. Currently, this framework has plug-ins for process mining, analysis, monitoring and conversion. ProM is available as binary distribution files for the Windows, Mac OS X and Unix platforms, and as source code under the terms of either the CPL license (up to ProM 5.2) or the GPL license (as from ProM 6.0). It requires a present installation of the Java Runtime Environment, version 1.5/5.0 or greater (Version 5.0 is recommended for Windows, Linux, and Mac OS X).
The ProM framework has been developed as a completely plug-able environment. It can be extended by simply adding plug-ins, i.e., there is no need to know or recompile the source code. Currently, more than 90 plug-ins have been added. The most interesting plug-ins are the mining plug-ins and the analysis plug-ins.
[image: image2.jpg]
Figure 2. General process mining model (Source: Process Mining: Discovery, Conformance and Enhancement of Business Processes).
 Figure 2 illustrates how these plug-ins can be categorized. The plug-ins based on data in the event log only are called discovery plug-ins because they do not use any existing information about deployed models. The plugins that check how much the data in the event log matches the prescribed behavior in the deployed models are called conformance plug-ins. Finally, the plug-ins need both a model and its logs to discover information that will enhance this model are called extension plug-ins.
In the context of our common questions, we use (i) discovery plug-ins to answer questions like “How are the cases actually being executed? Are the rules indeed being obeyed?", (ii) conformance plug-ins to questions like “How compliant are the cases (i.e. process instances) with the deployed process models? Where are the problems? How frequent is the (non-) compliance?", and (iii) extension plug-ins to questions like “What are the business rules in the process model?"

The architecture of ProM allows for five different types of plug-ins:

Mining plug-ins which implement some mining algorithm, e.g., mining algorithms that construct a Petri net based on some event log.

Export plug-ins which implement some “save as" functionality for some objects (such as graphs). For example, there are plug-ins to save EPCs, Petri nets, spreadsheets, etc.

Import plug-ins which implement an “open" functionality for exported objects, e.g., load instance-EPCs from ARIS PPM.

Analysis plug-ins which typically implement some property analysis on some mining result. For example, for Petri nets there is a plug-in which constructs place invariants, transition invariants, and a coverability graph.

Conversion plug-ins which implement conversions between different data formats, e.g., from EPCs to Petri nets.

Earlier tools such as EMiT, Thumb, and MiSoN have been refactored as plug-ins in the ProM framework. Figure 3 shows a screenshot of ProM. Note that one plug-in shows the discovered process model in terms of a Petri net.

[image: image3.jpg]
Figure 3. A screenshot of ProM.
 The ProMimport can be used to import event logs from various systems (e.g.,Staffware and FLOWer) such that they can be analyzed using ProM. ProM uses a standard XML format, named MXML. In our case study the proprietary format of the workflow management system used by provincial office was mapped onto the XML format. Therefore, we discuss the format in some more detail.
Understanding the format is also important for understanding the applicability of ProM. Figure 4 illustrates the standard MXML format. The Source element contains the information about software or system that was used to record the log. The Process element represents one process holding multiple cases. The ProcessInstance elements correspond to cases. One ProcessInstance element may hold multiple AuditTrailEntry elements. Each of these elements represents an event, i.e., one line in a table like in Figure 5.
[image: image4.jpg]
Figure 4. Standard MXML format (Source: Process Mining: Discovery, Conformance and Enhancement of Business Processes).
 Each AuditTrailEntry element may contain WorkfowModelElement, EventType, Timestamp, and Originator elements. The WorkfowModelElement and EventType are mandatory elements as shown in Figure 3. The WorkfowModelElement element refers to an activity, a sub-process, or some other routing element in the process model. The EventType element can be used to record the type of event (e.g., the start or completion of an activity or some exceptional behavior like the cancellation of a case). Table 1 does not show any event types. However, one can always use the default event type complete. The Timestamp element can be used to record the time of occurrence. The Originator element refers to the performer, e.g., the person executing the corresponding activity. To make the format more expressive, we define Data element that can be used at various levels (i.e., WorkfowLog, Process, ProcessInstance, and AuditTrailEntry level). If users want to specify additional information, this can be recorded using the Data element (e.g., data elements linked to cases).
As can be seen in Figure 6, an event log (field WorkowLog) has the execution of one or more processes (field Process), and optional information about the source program that generated the log (field Source) and additional data elements (field Data). Every process (field Process) has zero or more cases or process instances (field ProcessInstance). Similarly, every process instance has zero or more tasks (field AuditTrailEntry). Every task or audit trail entry (ATE) should at least have a name (field WorkowModelElement) and an event type (field EventType).

[image: image5.jpg]
Figure 5. Each of the elements in MXML represents an event (Source: Process Mining: Discovery, Conformance and Enhancement of Business Processes).

The event type determines the state of the tasks. There are thirteen supported event types: schedule, assign, reassign, start, resume, suspend, autoskip, manualskip, withdraw, complete, ATE abort, PI abort and unknown. The other task fields are optional. The Timestamp field supports the logging of time for the task. The Originator field records the person/system that performed the task. The Data field allows for more logging of additional information. Mapping the MXML format to the three mining perspectives, we see that the control flow perspective mainly focuses on the WorkowModelElement, the EventType and the Timestamp fields. The organizational perspective mainly depends on the Originator field. The case perspective especially relies on the extra Data fields. Note that in CPN Tools the process corresponds to the CP-net, the tasks (or ATEs) are the transitions in the CP-net, and each simulation of the CP-net corresponds to the creation of a process instance.
[image: image6.jpg]
Figure 6. An event log (field WorkFlowLog) has the execution of one or more processes (field Process), and optional information about the source program that generated the log (field Source) and additional data elements (field Data). (Source: Process Mining: Discovery, Conformance and Enhancement of Business Processes).

III. case study
 Prior to 2003, student registration at one of the private universities in Thailand (anonymized) involved students being registered in a single place, where they would present a form which had previously been filled in by the student and their department. After registration this information was then transferred to a computerized format. The University decided that the entire registration process was to be computerized for the autumn of 2004, with the admission and registration being carried out at the departments of the students. Such a system had a very high availability requirement: admissions tutors and secretaries were able to access and create student records (particularly at the start of a new academic year when new students used to arrive).

This paper provides the reader with documentation about how case information, additional case information, information about executed tasks in regard to students’ registration process in one of the Thailand’s universities —which has found in a Microsoft Access database (see Figure 7) — can be converted to the ProM MXML file format. The MXML file, on its turn, can be read by the ProM tool.
To do that, we had to track the following steps: First, four tables in the database, with a certain structure, were filled with data. The data dealt with information about cases that are registered at university. After that, the Microsoft Access database plugin in the ProM Import tool was used to convert data from these four tables with a similar structure as that of fields in the MXML format. In order to ease filling the four tables with these data, a Visual Basic script was written. In short, we aimed to convert data in a Microsoft Access database (.mdb format) to the ProM MXML format. The elements in the MXML format were respectively the Process Instance element and the Audit Trail Entry element. Furthermore, both the Process Instance element and the Audit Trail Entry
[image: image7.jpg]
Figure 7. A screenshot of the data source used in case study.
element encompassed Data as sub element which contained additional information about process instances and audit trail entries. Therefore, it is not surprising that we created the first a table with name “Process_Instances” which was filled with the identifier of a certain process instance (field PI-ID) accompanying description (field description). Furthermore, it was important to make the PI-ID field be as a primary key in the “Process_Instance” table. The second table Data_Attributes_Process_Instances was filled with additional information about each process instance, (so called data attributes). This table contained the fields PI-ID, Name and Value. The third table Audit_Trail_Entries was filled with data about tasks that had been performed during the execution of the process instance. The forth table Data_Attributes_Audit_Trail_Entries was set up in a similar way as table Data_Attributes_Process_Instances.

[image: image8.emf]ATE-ID

Data_Attribu

tes_Audit_T

rail_Entries

NameValue

Audit_Trail_

Entries

ATE-IDPI-ID

WFMElt

EventType

TimestampOriginator

Process_Ins

tances

PI-IDDescription

Data_Attribu

tes_Process

_Instances

PI-IDNameValue

(0,N)(1,1)

(0,N)

(1,1)

(0,N)

(1,1)

Figure 8. Relations between four tables in MXML format (Source: Process Mining: Discovery, Conformance and Enhancement of Business Processes).
In order to get the data into these four tables (see Figure 8), we used the functions addPIandAttr and returnFieldNamesInArray in the Visual Basic script. The Visual Basic script itself could be found by clicking on the Modules button and then by double-clicking on the PMfunctions module. These functions were created according to the idea that we have a table (that may also be the result of a query) in which each row contains information about a unique process instance and some additional information for each process instance. This means that we expect that each row contains information about the identifier of the process instance, the corresponding description, if available, and that the other fields may contain additional information about each process instance (the data attributes for a process instance).
When we now have a closer look to function addPIandAttr, we see that in total seven parameters needed to be provided, namely as:

1. namePItable: the name of the table that needed to be filled with the identifier of a certain process instance and, if available, its accompanying description. So, this table corresponded with the Process_Instances table.

2. namePIattr: the name of the table that needed to be filled with additional information about process instances that may be relevant but did not fit in the Process_Instances table.

3. nameTable: the name of the source table that contained the information to fill the Process_Instances table and the Data_Attributes_Process_Instances table.

4. piCol: the name of the field in the source table in which the unique identifier of each process instance was found. So, this field was assigned as the primary key in the source table.

5. descCol: the name of the field in the source table in which the description for each process instance was found. In this case study, because no such field existed in the source table, so the value "" was used instead.

6. cols: a reference to an array which contained the names of the fields in the source table containing additional information about each process instance. In this case study because no such field existed, in the source table, the value Null was provided instead.

7. prefix: the string used as a prefix for the name of each data attribute of a process instance.

For providing to parameters cols in function addPIandAttr a reference to an array, we used the function returnFieldNamesInArray. We provided two parameters to this function, namely as:

nameTableQuery: the name of the source that contained the fields containing additional information about each process instance.
start: the number of the first field in the source table that contained additional information about each process instance.
It is assumed that the remainder of the fields also contained additional information about each process instance. Furthermore, please keep in mind that the first field in a table has always index '0'.

endCol: the number of the field in the table which was the last one in the result. -1 may was used because all columns from the start to the last columns wanted to be included in our result.
Furthermore, we used the functions addATEandAttr and returnFieldNamesInArray to get the information in the Audit_Trail_Entries table and the Data_Attributes_Audit_Trail_Entries table. These functions were created according to the idea that we had a table in which each row contained information about a unique audit trail entry and some additional information for the audit trail entry. In fact, each row contained at least information about the task that had been executed and its task event type (e.g. start or complete or active for example). Each row also contained information about the timestamp, the originator and the other fields that hold additional information about each audit trail entry (the data attributes for an audit trail entry).

Having a closer look to function addATEandAttr, we had in total ten parameters namely as follows:
nameATEtable: the name of the table filled with audit trail entry information, like name of the task and originator of the task. So, this table corresponded with the Audit_Trail_Entries table.

nameATEattr: the name of the table filled with additional information about audit trail entries that could be relevant but does not fit in the Audit_Trail_Entries table. So, this table corresponded with the Data_Attributes_Audit_Trail_Entries table.
nameTable: the name of the source table that contained the information to fill the Audit_Trail_Entries table and the Data_Attributes_Audit_Trail_Entries table.

ATEidCol the name of the column in which the identifier of the Audit Trail Entry was found. In this case study, "" was used because there was no identifier available.

piCol: the name of the field in the source table in which identifiers of process instances was found. This field was the foreign key of the PI-ID field in the Process_Instances table.

wfCol: the name of the field in the source table in which names of tasks that have been performed can be found.

etCol: the name of the field in the source table in which the task event type for each task can be found.

tsCol: the name of the field in the source table in which times that a task changed its state can be found (or its event type). If no such field exists in the source table the value "" has to be provided.

orCol: the name of the field in the source table in which persons or systems that caused the change in a task state were found. In this case study because no such field existed in the source table, then the value "" was provided.

cols: a reference to an array which contained the names of the fields in the source table holding additional information about each audit trail entry. In this case study because no such fields existed in the source table, so the value Null was chosen.
For providing to parameters cols in function addATEandAttr a reference to an array, we used the function returnFieldNamesInArray. This function has already been discussed before and can be used in a similar way. Accordingly, the four created tables are shown in Figure 9.

[image: image9.jpg]
Figure 9. A screenshot of four created tables ready to be used as input in PromImport framework.
IV. PromImport Plugin
The last thing we need to do now is that the data in the four tables has to be converted to the ProM MXML format. To this end, we can use the ProM Import framework
. After that we have opened the ProM Import tool we can select in the filter list at the left side of the MS Access Database plugin. A screenshot of the MS Access database plugin in the ProM Import framework is shown in Figure 10.
In total, eight configuration parameters can be set. For the ProM Import tool it is important that the definitions of the Process Mining tables in the database are exactly the same as the definition of the Process Mining tables:
[image: image10.jpg]
Figure 10. A screenshot of the MS Access database plugin in the ProM Import framework which is ready to be converted to MXML format.
[image: image11.jpg]
Figure 11: Screenshot of the window to set up the name of the database that has to be provided after jdbc:odbc: in the field DbHostUrl in the MS Access database plugin.
DbDriver: the database driver to use while accessing the Microsoft Access database.

DbUser: user name for the Microsoft Access database.

DbPassword: password for the Microsoft Access database.

DbHostUrl: URL of the Microsoft Access database.

ProcessInstancesTableName: the name of the Process Instances table in the database.

AtesTableName: the name of the Audit Trail Entries table in the database.

AttrPiTableName: the name of the Data Attributes table for the Process Instances in the database.

AttrAteTableName: the name of the Data Attributes table name for the Audit Trail Entries in the database.

In this case study, because the data in the example database can be accessed without the need for users with a password, an empty user and password can be used for the second and third configuration fields. Afterwards, it was turn to configure an ODBC connection to a Microsoft Accessed Database at our computer. To do this, at the first step, we accessed the "Administrative Tools" in Control Panel window. Double-click "Data Sources (ODBC)".
We clicked on the button "Add..." of the "System DSN" tab and then we selected "Driver to Microsoft Access (*.mdb)". At the second step, we defined our "Data Source Name" (Database11.mdb) in order to inform where the Microsoft Access database is located (see Figures 11, 12 and 13).

[image: image12.jpg]
Figure 12: Screenshot of the window to set up the database location.
[image: image13.jpg]
Figure 13: Screenshot of the created MXML file (students’ registration info).
V. CONCLUSION
 As already said before, the main objective of the paper is to convert data from Microsoft Access database — containing information about the students IDs and registration tasks that have been executed in one of universities in Thailand— to the ProM MXML format. To do this, we had to define four tables with a similar structure as that of fields in the MXML format. The elements in the MXML format are respectively the Process Instance element and the Audit Trail Entry element. Furthermore, both the Process Instance element and the Audit Trail Entry element have Data as sub element which contains respectively additional information about process instances and audit trail entries. Finally the data in the four tables were converted to the ProM MXML format by ProM Import framework. In addition, we set up an ODBC connection for Access Database at our computer.
References
[1] W.M.P. van der Aalst. Exterminating the Dynamic Change Bug: A Concrete Approach to Support Workflow Change. Information Systems Frontiers, 3(3):297–317, 2001.

[2] W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings of the 5th Workshop on Business Process Modeling, Development and Support (BPMDS’04), volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical University, Latvia, 2004.

[3] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT press, Cambridge, MA, 2002.

[4] W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security: Detecting Anomalous Process Executions and Checking Process Conformance. In N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Workshop on Security Issues with Petri Nets and other Computational Models (WISP 2004), pages 69–84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa, Italy, 2004.

[5] W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interaction Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors, International Conference on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin, 2004.

[6] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering, 47(2):237–267, 2003.

[7] W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers, Amsterdam, 2004.

[8] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[9] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs. In Sixth International Conference on Extending Database Technology, pages 469–483, 1998.

[10] H. de Beer. The LTL Checker Plugins: A Reference Manual. Eindhoven University of Technology, Eindhoven, 2004.

[11] J.E. Cook, C. He, and C. Ma. Measuring Behavioral Correspondence to a Timed Concurrent Model. In Proceedings of the 2001 International Conference on Software Mainenance, pages 332–341, 2001.
[12] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology, 7(3):215–249, 1998.

[13] J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model. ACM Transactions on Software Engineering and Methodology, 8(2):147–176, 1999.

[14] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors, Proceedings of the Conference on Organizational Computing Systems, pages 10 – 21, Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

[15] S. Fickas, T. Beauchamp, and N.A.R. Mamy. Monitoring Requirements: A Case Study. In Proceedings of the 17th IEEE International Conference on Automated Software Engineering (ASE’02), page 299. IEEE Computer Society, 2002.

[16] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties on Running Programs. In Proceedings of the 16th IEEE International Conference on Automated Software Engineering (ASE’01), pages 412–416. IEEE Computer Society Press, Providence, 2001.

[17] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business process intelligence. Computers in Industry, 53(3):321–343, 2004.

[18] D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Quality through Exception Understanding, Prediction, and Prevention. In P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, editors, Proceedings of 27th International Conference on Very Large Data Bases (VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

[19] K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceedings of the 16th IEEE International Conference on Automated Software Engineering (ASE’01), pages 135–143. IEEE Computer Society Press, Providence, 2001.

[20] K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Proceedings of the 8th International Conference on Tools and Algorithms for the Constructionand Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes in Computer Science, pages 342–356. Springer-Verlag, Berlin, 2002.

[21] J. Herbst. A Machine Learning Approach toWorkflow Management. In Proceedings 11th European Conference on Machine Learning, volume 1810 of Lecture Notes in Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

[22] T. Hoffman. Sarbanes-Oxley Sparks Forensics Apps Interest: Vendors Offer Monitoring Tools to Help Identify Incidents of Financial Fraud. ComputerWorld, 38:14–14, 2004.

[23] IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Analyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer, Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

[24] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-Wesley, Reading MA, 1998.

[25] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag, New York, 1991.

[26] A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Using Genetic Algorithms to Mine Process Models: Representation, Operators and Results. BETA Working Paper Series, WP 124, Eindhoven University of Technology, Eindhoven, 2004.

[27] M. zur M¨uhlen and M. Rosemann. Workflow-based Process Monitoring and Controlling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings of the 33rd Hawaii International Conference on System Science (HICSS-33), pages 1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

[28] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Annual Symposium on the Foundations of Computer Science, pages 46–57. IEEE Computer Society Press, Providence, 1977.

[29] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

[30] S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes in Workflow Systems: A Survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

[31] W.N. Robinson. Monitoring Software Requirements using Instrumented Code. In Proceedings of the 35th Annual Hawaii IEEE International Conference on Systems Sciences, pages 276–276. IEEE Computer Society , 2002.

[32] W.N. Robinson. Monitoring Web Service Requirements. In Proceedings of 11th IEEE International Conference on Requirements Engineering (RE 2003), pages 56–74. IEEE Computer Society , 2003.

[33] E. Roubtsova. A Property Specification Language for Workflow Diagnostics. Internal note, Eindhoven University of Technology, 2005.

[34] P. Sarbanes, G. Oxley, and et al. Sarbanes-Oxley Act of 2002, 2002.

[35] M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit. In Proceedings of 28th International Conference on Very Large Data Bases (VLDB’02), pages 880–883. Morgan Kaufmann, 2002.

[36] Staffware. Staffware Process Monitor (SPM).
http://www.staffware.com, 2002.

[37] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering, 10(2):151–162, 2003.
2012 Tenth International Conference on ICT and Knowledge Engineering

978-1-4673-2317-8/12/$31.00©2012 IEEE

� For Windows users, the ProM Import tool can be runned by clicking Start/Programs/ProM Import Framework/ProM Import Framework.

205
212

_1413018901.vsd
(0,N)

ATE-ID

Name

Value

Data_Attributes_Audit_Trail_Entries

Audit_Trail_Entries

ATE-ID

PI-ID

WFMElt

EventType

Timestamp

Originator

Process_Instances

PI-ID

Description

Data_Attributes_Process_Instances

PI-ID

Name

Value

(1,1)

(0,N)

(1,1)

(0,N)

(1,1)

