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Abstract  

 This study addresses the critical challenge of supply chain risk management in startup unmanned retail 

enterprises, where conventional models struggle to capture dynamic risk transmissions under data scarcity. By 

innovatively integrating Bayesian network (BN) methodology with expert knowledge and fragmented 

operational data, we develop a tripartite risk framework encompassing technological, operational, and consumer 

behavior dimensions. Empirical validation through mixed-methods analysis of Chinese unmanned retail startups 

reveals three pivotal findings: First, procurement management (X3), network failures (X6), and sensor reliability 

(X7) emerge as core risk nodes, demonstrating heterogeneous effects across risk levels—network stability 

paradoxically serves both as a safety foundation (P(T=0|X6=0)=26.82%) and crisis accelerator (P(T=1|X6=1)=52.96%). 

Second, technology-operations coupling effects amplify risk propagation, where IoT component failures trigger 

cascading decision biases (e.g., 55.01% medium-risk probability from X3 disruptions). Third, posterior 

probability analysis identifies payment system stability (X8) as the global leverage point, with 40.42% influence 

on low-risk states. Theoretically, we extend complex adaptive systems theory by quantifying risk factor 

asymmetry and validating Haimes' risk coupling dynamics in digital retail contexts. Methodological limitations 

regarding static probability assumptions and startup sample bias are addressed through proposed dynamic 

Bayesian network extensions and AI ethics integration in future research. 

Keywords: Bayesian network; Start-up unmanned retail enterprises; Supply chain; risk 

 

1. Background and Statement of the Problem 

The unmanned retail industry has experienced rapid growth in recent years, propelled by advancements 

in IoT, artificial intelligence, and big data technologies, establishing itself as a critical direction in the global 

retail sector's digital transformation. Positioned as a solution to the cost-intensive scaling challenges and thin 

profit margins inherent in conventional retail models (Denuwara et al., 2021), this emerging sector demonstrates 

substantial market potential. However, startup enterprises in unmanned retail confront distinctive supply chain 

management challenges characterized by three operational paradoxes: heightened technological dependence 

(particularly on IoT infrastructure and AI algorithms), dynamic inventory requirements (with high-frequency 

SKU rotations), and environmental volatility (including pandemic disruptions and regulatory uncertainties) 

(Denuwara et al., 2021; Liu et al., 2018, 2022). These interdependent factors collectively engender complex 

causal relationships and dynamic evolution patterns in supply chain risks. Empirical studies identify three critical 

risk clusters: inventory misallocation, procurement inefficiencies, and systemic technological failures(Rukundo 

et al., 2025). This risk profile reveals fundamental management dilemmas for startups in complex supply chain 

ecosystems. First-mover enterprises employing asset-light operational models exhibit excessive node 

dependency within supply networks and inadequate risk resilience, potentially eroding consumer confidence 

through suboptimal service experiences (Parasuraman, 2000); Second, the inherent unpredictability of market 

dynamics coupled with data scarcity undermines the effectiveness of conventional risk assessment 

methodologies in mapping risk transmission pathways. 

While extant research has yielded substantial insights into supply chain risk management, three critical 

limitations persist. First, prevailing models predominantly target established corporations, inadequately 

addressing the operational realities of startups characterized by resource constraints and historical data paucity. 

Second, mainstream methodologies primarily employ static metrics — including Analytic Hierarchy Process 

(AHP), Fault Tree Analysis (FTA), and Failure Mode and Effects Analysis (FMEA) — that rely on stationary 

assumptions (Ayyildiz & Taskin Gumus, 2021; Kilic et al., 2023; Ramezanifar et al., 2023). These approaches 
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prove inadequate for capturing latent risk transmission pathways under startups' data-scarce conditions and fail 

to quantify dynamic interaction effects among multiple risk factors. Third, scholarly attention in unmanned retail 

contexts remains disproportionately focused on consumer behavior and technology adoption (Adam & Dandutse, 

2023; Szabó-Szentgróti et al., 2023; I.-C. Wang et al., 2021), with insufficient exploration into systematic supply 

chain risk modeling. These theoretical blind spots collectively result in the absence of risk-informed decision 

support tools specifically tailored for emerging unmanned retail ventures. 

To address these research limitations, this study innovatively incorporates Bayesian network (BN) 

methodology. This approach offers three distinctive analytical advantages: Firstly, its probabilistic reasoning 

mechanism enables the integration of expert knowledge with fragmented datasets, effectively mitigating 

historical data deficiencies common in startup operations. Secondly, the directed acyclic graph structure provides 

visual representation of causal chains and cascade effects among risk determinants. Finally, dynamic updating 

capabilities facilitate real-time risk evaluation, aligning with the high-frequency operational requirements of 

unmanned retail supply chains (Hänninen et al., 2014; Hosseini & Ivanov, 2022; Marcot & Penman, 2019). 

Building upon these theoretical foundations, we develop a tripartite risk analysis framework encompassing 

technological, operational, and consumer behavior dimensions, with empirical validation using operational data 

from emerging unmanned retail ventures. 

This study makes dual theoretical advancements. First, it extends Bayesian network applications to 

supply chain risk management in startup contexts, thereby advancing the implementation of complex adaptive 

systems theory within retail digital transformation. Second, it identifies emerging risk transmission mechanisms 

specific to unmanned retail supply chains, particularly the technology-operations coupled risks, addressing the 

underexplored realm of technology-embedded risks in extant literature. 

For practical implications, the developed dynamic risk assessment tool provides actionable insights for 

startups to optimize supplier selection, inventory strategies, and contingency response protocols. Simultaneously, 

it offers policymakers quantitative references for formulating targeted industrial support measures.  

The article is organized as follows: Section 1 establishes the research context through a systematic introduction. 

Section 2 critically reviews theoretical and empirical developments in the field. Section 3 elaborates on 

methodological design and data acquisition protocols. Section 4 presents the BN model architecture and 

empirical findings from scenario analyses. Section 5 synthesizes theoretical and practical implications while 

discussing research limitations. 

 

2. Literature Review 

2.1 Key Technologies in Unmanned Retail 

Traditional retail supply chains, extending from upstream manufacturers through multiple distributors 

and retailers before reaching consumers, inherently limit price competitiveness for end-users (Wu et al., 2014) 

However, unmanned retail enterprises require substantial R&D investments and equipment procurement costs, 

resulting in higher per-unit pricing (Kaur et al., 2011). Consequently, the advantages of machine-driven labor 

substitution through economies of scale become more pronounced in unmanned retail, generating diversified 

profit streams (Adapa et al., 2020). 

Current mainstream unmanned retail technologies fall into three categories: RFID (Radio-Frequency 

Identification) (Denuwara et al., 2021), gravimetric sensing, and computer vision (Zhang et al., 2020; Liu et al., 

2018; Zhang et al., 2019). RFID technology identifies targets and reads/writes data via radio signals without 

mechanical or optical contact. As an early-developed and relatively mature technology (Want, 2006; Kaur et al., 

2011), RFID has been widely applied across scenarios including library systems, access control, food safety 

traceability, and IoT applications (Nambiar, 2009). Amazon's unmanned store AmazonGo exemplifies advanced 

implementations, integrating patented computer vision technologies for "detecting object interactions/movements" 

and "identifying item transfers from fixtures" (Zhang et al., 2020). 

In summary, unmanned retail fundamentally relies on Internet of Things (IoT) and artificial intelligence 

(AI) technologies to deliver "low-contact services," primarily manifesting in two technological paradigms: AI-

driven systems (e.g., Amazon Go) employing biometric recognition and visual sensors for automated checkout, 

and IoT-driven systems (e.g., Bingo Box) dependent on RFID tagging and barcode scanning for transaction 

processing (Rukundo et al., 2025; I.-C. Wang et al., 2021) . The evolutionary trajectory demonstrates technological 

convergence (e.g., AI+IoT integrated intelligent recognition systems) alongside legacy equipment modernization 

(e.g., vending machines with digital payment interfaces), with the overarching objective of establishing data-driven 

intelligent consumption ecosystems. 
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2.2 Supply Chain Risk Management Approaches 

Supply Chain Risk Management (SCRM) research has established a theoretical framework centered on 

risk identification, assessment, and mitigation (Gurtu & Johny, 2021). Risk assessment methodologies predominantly 

bifurcate into two categories. The first involves quantitative static models, exemplified by integrated approaches 

combining the Analytic Hierarchy Process (AHP) with fuzzy comprehensive evaluation (Bozanic et al., 2023; 

Park & Kang, 2021). While dependent on expert-weighted parameters and linear assumptions, these methods 

struggle to capture dynamic nonlinear interdependencies among risk factors. The second category encompasses 

data-driven models, including machine learning techniques (e.g., random forests and neural networks) (Lin et 

al., 2022; Tirkolaee et al., 2021). Although capable of modeling complex nonlinear relationships, such 

approaches critically depend on extensive historical training data - a requirement conflicting with startups' 

operational immaturity and fragmented digital records, thereby creating a "small-sample paradox." While 

demonstrating robustness in traditional manufacturing and mature retail contexts, these methods exhibit 

significant limitations in addressing unmanned retail startups' unique technology-operations duality risks due to 

their static nature and data dependency. 

Bayesian Networks (BNs) have been increasingly adopted in supply chain resilience studies due to their 

probabilistic reasoning capabilities and causal visualization advantages. Compared to Fault Tree Analysis (FTA), 

BNs excel in handling multifactorial dependencies and feedback loops (Zhang et al., 2014). Through conditional 

probability distributions, BNs quantify interdependencies among variables while explicitly modeling uncertainties 

(e.g., prior/posterior probabilities, sensitivity analyses). Their directed acyclic graphs (DAGs) visually formalize 

causal relationships, enabling bidirectional reasoning: forward prediction ("what outcomes may occur") and 

backward diagnosis ("what causes are probable") (Zhang et al., 2014). This dual functionality facilitates 

probabilistic forecasting of risk events and captures interactive effects among risk factors in complex systems. 

Crucially, under data-scarce conditions, domain experts can a priori define network structures and conditional 

probability tables (Marcot & Penman, 2019), making BNs particularly suitable for startup operational environments. 

2.3 Risk of supply chain of start-ups 

Failure to innovate beyond conventional retail supply chain models in unmanned retail often results in 

supply-demand misalignment (Yang, 2019). While technological advancements eliminate competitors lacking 

technical upgrades (Wang & Zheng, 2023), substantial pre-scale R&D investments coupled with supply chain 

inflexibility expose unmanned retail startups to heightened bankruptcy risks during their incubation phase 

(Zhang, 2019). Most startups disproportionately prioritize technological solutions while neglecting risk-aware 

operations management, thereby compromising consumer experience sustainability (Cao, 2017). 

This study employs organizational life cycle theory and technology dependency theory to identify three 

distinctive supply chain risk characteristics in unmanned retail startups: one is resource constraints, capital 

limitations force reliance on single suppliers or lean inventory strategies, reducing supply chain node 

redundancy; the second is data scarcity, insufficient historical operational data impedes effective machine 

learning model training; third, risk neglect, early-stage supply chain vulnerabilities, if unaddressed, escalate into 

existential threats during scaling phases (Magliocca et al., 2023; Safari et al., 2024; Wagner, 2021). 

Startups frequently adopt high inventory turnover strategies due to demand forecasting inadequacies and 

capital limitations, exponentially amplifying stockout/misallocation risks (Wagner, 2021). Weak bargaining power 

and overdependence on limited suppliers for cost reduction (Safari et al., 2024) render supplier delivery reliability 

a critical single-point failure risk. Unmanned stores' price-driven customer acquisition strategies may induce 

inventory distortions (Denuwara et al., 2021), creating a "suboptimal inputs → operational failures" vicious cycle. 

In unmanned retail contexts, shelf replenishment velocity directly impacts customer experience and 

inventory turnover rates (Shen, 2024). The operational continuity critically depends on seamless IoT device-

algorithm-network integration (Wang & Zheng, 2023) , with intelligent checkout systems constituting the core 

experiential differentiator (Shen, 2024) - any malfunction incurs catastrophic losses. Furthermore, abrupt 

consumer behavior shifts (e.g., pandemic-induced contactless preferences) propagate demand-side shocks 

through inventory systems (Heins & Scheler, 2024; Hosseini & Ivanov, 2022). 

 

3. Reacher Method 

3.1 Research Design 

This study employs a mixed-methods approach, integrating quantitative supply chain operational data with 

qualitative expert interviews to construct and validate a Bayesian network risk model. The sample comprises 

unmanned retail chain startups established within three years in Nanning, Guangxi, China, selected through three 
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criteria: (1) technological dependency (mandatory use of IoT shelf monitoring, RFID, and video surveillance 

systems); (2) supply chain visibility (provision of ≥6-month procurement, inventory, and distribution logs with 

failure records); (3) risk event history (≥1 verified supply chain disruption within the past 12 months). Focusing 

exclusively on chain-operated unmanned convenience stores ensures methodological coherence. 

3.2 Data Collection 

Three data categories were acquired:Operational data: Historical ERP system records via API 

integration, encompassing 12 metrics including purchase order lead time, inventory turnover rate, and stockout 

frequency (June 2017 to June 2019). 

Technical logs: IoT device-derived parameters (8 risk indicators: sensor false-alarm rate, network 

latency duration, etc.). 

Expert assessments: Semi-structured interviews with three executives per firm (CEO, Supply Chain Director, 

CTO), employing Likert 7-point scales to quantify conditional probability relationships among risk factors. 

To address data heterogeneity, Z-score normalization and K-nearest neighbors (KNN) imputation 

(K=5) preprocessed quantitative data. Expert judgments and historical data were fused via Dempster-Shafer 

theory to generate Bayesian network prior probability distributions, yielding 1,345 validated data instances. 

3.3 Constructing Bayesian Networks for Supply Chain Risks in Startup Unmanned Retail Enterprises 

Bayesian networks (BNs), also known as belief networks, are probabilistic networks based on Bayesian 

methods and probability theory for probabilistic reasoning (Liu et al., 2022). They are widely used to handle 

statistical uncertainties and are represented as directed acyclic graphs (Weber et al., 2012). 

To address demand uncertainty in supply chains, Bayesian network models have been applied for 

prediction (Jäger et al., 2018; Cao, 2017; Wang & Liu, 2015; Wu et al., 2014; Zhang, 2017). The process 

involves two key steps: First, classifying the magnitude of nodes within the supply chain and defining their value 

ranges. Second, constructing a Bayesian network based on historical statistical data for each node to derive 

conditional probability distributions across the network (Stephenson, 2000; Weber et al., 2012) . This approach 

enables precise estimation of demand across nodes while accounting for their interdependencies, thereby 

assisting supply chain managers in mitigating demand fluctuations and uncertainties, ultimately enhancing 

operational efficiency and flexibility (Wu et al., 2014; Zhang, 2017). 

3.3.1 Risk Node Identification 

Through literature synthesis and expert interviews, we identified critical failure events including: 

procurement management predictability deficits, declining delivery punctuality rates, delayed shelf 

replenishment, operational disorganization, and customer transaction failures due to equipment malfunctions. 

Grounded in the literature and empirical insights, this study analyzes supply chain failure risks with enterprise, 

identifying four risk node clusters: 

T: Supply Chain Risks 

a. Operational layer: Inventory management (X1), supplier delivery punctuality rate (X2), procurement 

management (X3), shelf replenishment timeliness (X4) 

b. Technological layer: Hardware/software failures (X5), network failures (X6), sensor reliability (X7), 

payment system stability (X8) 

c. Consumer behavior layer: Customer behavior (X9) 

 Risk quantification requires computing specific probability values based on inter-variable dependencies. Event 

logic relationships within the supply chain were established through business process mapping and expert 

interview validation, yielding the Bayesian network topology presented in Figure 1. 

 
Figure 1 Bayesian Network Diagram of Supply Chain Risks in Startup Unmanned Retail Enterprises 
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4. Result 

4.1 Tools 

The modeling process utilized Python 3.6.7, with key third-party libraries including: pandas, numpy, 

and pgmpy. 

4.2 Data and Variables 

The variables encompass: supply chain risk (T), inventory management (X1), supplier delivery 

punctuality rate (X2), procurement management (X3), shelf replenishment timeliness (X4), hardware/software 

failures (X5), network failures (X6), sensor reliability (X7), payment system stability (X8), customer behavior 

(X9), loss (L), and total investment (I). 

4.3 Risk Level Classification 

For supply chain risk (T), multiple quantification methods exist across risk typologies. Building upon 

prior research, we define supply chain risk loss T as the ratio of loss to total investment following any risk event 

(Wu et al., 2014): 

Ti=L/I 

where I denotes total investment, and L represents loss caused by a risk event. 

The distribution of T is as follows: 

 
 

Figure 2 Data T Distribution Diagram 

 

Table 1 Data T Distribution Table 

 count mean std min 25% 50% 75% max 

T 1345.0 0.240376 0.180938 0.003698 0.106225 0.207358 0.328126 1.0 

 

 The "count" in the above table denotes sample size, "mean" indicates the average loss rate, "std" 

represents standard deviation, "min" signifies the minimum value, "25%-75%" corresponds to the lower quartile, 

median, and upper quartile, while "max" refers to the maximum value. 

 The distribution reveals that 75% of observations exhibit loss rates below 32.8%. Accordingly, we 

discretize risk into three categories based on empirical quantiles: 

    Category 0 (Low supply chain risk): Loss rate < 10.6%, labeled as risk level T0 

    Category 1 (Medium supply chain risk): 10.6% ≤ Loss rate ≤ 32.8%, labeled as risk level T1 

    Category 2 (High supply chain risk): Loss rate > 32.8%, labeled as risk level T2 

4.4 Bayesian Network Parameter Learning 

4.4.1 Bayesian Network for Supply Chain Risks 

     Parameter estimation methods primarily include two conventional approaches: Maximum Likelihood 

Estimation (MLE) and Bayesian estimation. While both methods have respective advantages and limitations, 

this study employs MLE for structured datasets due to its lower computational complexity. However, its 

parameter estimation accuracy on limited datasets depends on whether the sample data distribution aligns with 

the underlying true data distribution. 

The required probabilities for constructing the Bayesian network are obtained through parameter 

learning. 
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Table 2 T Bayesian Network Probability 

Xi T 

X6 X7 X3 X1 0 1 2 

0 

0 

0 
0 0.260989 0.491758 0.247253 

1 0.336449 0.373832 0.28972 

1 
0 0.246753 0.480519 0.272727 

1 0.242424 0.515152 0.242424 

1 

0 
0 0.32 0.493333 0.186667 

1 0.257576 0.5 0.242424 

1 
0 0.211538 0.557692 0.230769 

1 0.21875 0.46875 0.3125 

1 

0 

0 
0 0.198198 0.459459 0.342342 

1 0.211765 0.505882 0.282353 

1 
0 0.150943 0.54717 0.301887 

1 0.212766 0.638298 0.148936 

1 

0 
0 0.3125 0.40625 0.28125 

1 0.265625 0.59375 0.140625 

1 
0 0.229167 0.583333 0.1875 

1 0.176471 0.676471 0.147059 

 

The prior probability tables of variables and conditional probability tables between independent-target 

variables are shown in Table 2. Table 2 reveals the parameters (i.e., probabilities) of node T in the network 

structure. Node T is connected to four variables (X1, X3, X6, X7), with probabilities ≥0.5 predominantly 

occurring in the T=1 column, indicating higher likelihoods of high-risk states (T2). 

Observational analysis demonstrates limited impacts of single risk events on T. When T=0 (low-risk), 

the highest probabilities occur under: 

 

P(T=0|X6=0,X7=0,X3=0,X1=1)=33.64% 

P(T=0|X6=0,X7=1,X3=0,X1=0)=32.00% 

These results suggest low-risk states are predominantly associated with inventory management (X1) or 

product identification (X7). 

 

For T=1 (medium-risk), probabilities ≥0.5 emerge when any of the following conditions are met: 

①X6=0,X7=0,X3=1,X1=1 ； ②X6=0,X7=1,X3=0,X1=1 ； ③X6=0,X7=1,X3=1,X1=0 ；

④X6=1,X7=0,X3=0,X1=1 ； ⑤X6=1,X7=0,X3=1,X1=0 ； ⑥X6=1,X7=0,X3=1,X1=1 ；

⑦X6=1,X7=1,X3=0,X1=1 ； ⑧X6=1,X7=1,X3=1,X1=0 ； ⑨X6=1,X7=1,X3=1,X1=1 

 

For T=2 (high-risk), probabilities exceed 30% under: 

①X6=0,X7=1,X3=1,X1=1； 

②X6=1,X7=0,X3=0,X1=0； 

③X6=1,X7=1,X3=1,X1=0 

 

This highlights unmanned retail’s critical dependency on network stability (X6), where network failures 

invariably elevate supply chain risks. Procurement management (X3) and sensor reliability (X7) also exert 

significant influences. 

Prioritization analysis based on prior probabilities identifies X3 (procurement management) as the 

primary mitigation priority due to its inherent risk severity, followed by X6 (network failures), X7 (sensor 

reliability), and X1 (inventory management). 

4.4.2 Conditional Probability Results 

The above analysis confirms the direct impacts of X1 (inventory management), X3 (procurement 

management), X6 (network failures), and X7 (sensor reliability) on T. The conditional probability distributions 

for Xj (j=1,2,3,…,9) are detailed in the subsequent Table 3. 

 

 



การประชุมวิชาการระดับชาติและนานาชาติ เบญจมิตรวิชาการ คร้ังท่ี 15 
The 15th BENJAMIT Network National & International Conference 
(Artificial Intelligence : A Driving Force For Sustainable Development Goals) 

 

85 

 

 Thonburi University, Bangkok, Thailand 
May 15, 2025 

Table 3 P(T=Ti|X=Xj)(i=0,1,2; J=1,2,3,…,9) Probability Distribution 

Conditional Probability 

Is there a risk 

(0= no risk; 

1= have risk) 

T 

0 1 2 

P(T=Ti|X=X1) 
0 0.2488  0.4929  0.2583  

1 0.2535  0.5110  0.2355  

P(T=Ti|X=X2) 
0 0.2485  0.4896  0.2619  

1 0.2538  0.5153  0.2309  

P(T=Ti|X=X3) 
0 0.2660  0.4776  0.2564  

1 0.2152  0.5501  0.2347  

P(T=Ti|X=X4) 
0 0.2500  0.4976  0.2524  

1 0.2514  0.5029  0.2457  

P(T=Ti|X=X5) 
0 0.2640  0.4871  0.2488  

1 0.2270  0.5215  0.2515  

P(T=Ti|X=X6) 
0 0.2682  0.4815  0.2503  

1 0.2213  0.5296  0.2490  

P(T=Ti|X=X7) 
0 0.2462  0.4868  0.2670  

1 0.2598  0.5264  0.2138  

P(T=Ti|X=X8) 
0 0.2599  0.4950  0.2450  

1 0.2365  0.5065  0.2570  

P(T=Ti|X=X9) 
0 0.2533  0.4898  0.2569  

1 0.2461  0.5156  0.2383  

 

The following histogram can be obtained. 

 
Figure 3 P(T=Ti|X=Xj) Probability Distribution 

 

As indicated in the preceding figure and table, the top three events associated with low-risk supply chain (T=0) are: 

    P(T=0 | X6=0) = 0.2682, indicating a 26.82% probability of low-risk occurrence when network failures (X6) 

are absent. 

    P(T=0 | X3=0) = 0.2660, reflecting a 26.60% probability of low-risk status when procurement management 

(X3) remains stable. 

    P(T=0 | X5=0) = 0.2640, demonstrating a 26.40% probability of low-risk conditions without hardware/software 

failures (X5). 

For high-risk supply chain (T=2), the predominant contributors are: 

    P(T=2 | X7=0) = 0.2670, showing a 26.70% high-risk likelihood when sensor reliability (X7) is compromised. 

    P(T=2 | X2=0) = 0.2619, revealing a 26.19% high-risk probability under supplier delivery delays (X2). 

    P(T=2 | X1=0) = 0.2583, suggesting a 25.83% high-risk chance with inventory management (X1) inefficiencies. 

Regarding medium-risk supply chain (T=1), the critical factors include: 

    P(T=1 | X3=1) = 0.5501, denoting a 55.01% medium-risk probability when procurement management (X3) 

is suboptimal. 

    P(T=1 | X6=1) = 0.5296, corresponding to a 52.96% medium-risk likelihood during network failures (X6). 

    P(T=1 | X7=1) = 0.5264, indicating a 52.64% medium-risk occurrence when sensor reliability (X7) deteriorates. 
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Conditional probability analysis reveals the key driving mechanisms and dynamic transmission 

pathways of risk hierarchies in startup unmanned retail supply chains. The results indicate that X3 (procurement 

management), X6 (network failures), and X7 (sensor reliability) are core variables influencing supply chain risk 

(T), with effect magnitudes exhibiting significant heterogeneity across risk levels. 

In low-risk scenarios (T=0), mitigating X6 (network failures) emerges as the highest priority (P(T=0 | 

X6=0) = 26.82%), followed by X3 (procurement management) and X5 (hardware/software failures). This 

suggests that technical infrastructure stability (e.g., network reliability) constitutes the foundational safeguard 

for maintaining low-risk operations under normal conditions. 

For medium/high-risk scenarios (T=1/T=2), the risk-triggering effects of X3, X6, and X7 intensify 

substantially: 

    X3 (procurement management) failure elevates medium-risk probability to 55.01% (P(T=1 | X3=1) = 55.01%) 

    X7 (sensor reliability) degradation drives high-risk probability to 26.70% (P(T=2 | X7=0) = 26.70%), 

highlighting the catastrophic amplification effects of technical component failures. 

The dual-threat nature of X6 (network failures) is particularly notable. It functions both as: 

    A critical defensive node for low-risk maintenance (P(T=0 | X6=0) = 26.82%) 

    A core risk accelerator for medium/high-risk escalation (P(T=1 | X6=1) = 52.96%) 

This duality positions network stability as both a safety foundation and a risk lever. 

X3 (procurement management) demonstrates a butterfly effect through its upstream dominance over 

medium-risk propagation. Suboptimal supplier selection or contractual vulnerabilities progressively amplify 

downstream technical risks (e.g., sensor data inaccuracies) and operational risks (e.g., inventory mismatches). 

Although X7 (sensor reliability) exhibits limited direct impacts on low-risk states, its latent single-point 

failure potential demands heightened vigilance. Sensor failures trigger abrupt high-risk transitions (P(T=2 | 

X7=0) = 26.70%) and synergize with X6 (network failures) to exacerbate systemic collapse risks (e.g., data 

synchronization failures during network outages). 

4.4.3 Posterior Probability Results and Analysis 

After completing parameter learning in the Bayesian network, posterior probabilities can be computed. 

This study primarily investigates influencing factors of supply chain risks. By conditioning on variable T (with 

three discrete states), we calculate posterior probabilities under different risk levels as follows: 

 

Table 4 P(X|T=0) Posterior Probability 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

0 0.61745 0.615349 0.728272 0.614157 0.643502 0.66807 0.654712 0.59578 0.618637 

1 0.38255 0.384651 0.271728 0.385843 0.356498 0.33193 0.345288 0.40422 0.381363 

  

As evidenced by the Table 4, when low-risk supply chain states (T=0) occur, the highest posterior 

probability is associated with X8 (P(X8=1 | T=0) = 40.42%), followed by X4 (P(X4=1 | T=0) = 35.58%), and 

subsequently X2 (P(X2=1 | T=0) = 38.47%). 

 

Table 5 P(X|T=1) Posterior Probability 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

0 0.623867 0.607291 0.651551 0.607007 0.630774 0.605075 0.659178 0.582296 0.618135 

1 0.376133 0.392709 0.348449 0.392993 0.369226 0.394925 0.340822 0.417704 0.381865 

     

As evidenced by Table 5, when medium-risk supply chain states (T=1) occur, the node with the highest 

posterior probability is X8 (P(X8=1 | T=1) = 41.77%), followed by X6 (P(X6=1 | T=1) = 39.49%), and thirdly 

X4 (P(X4=1 | T=1) = 39.30%). 

 

Table 6 P(X|T=2) Posterior Probability 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

0 0.644572 0.611456 0.699205 0.610279 0.640226 0.615451 0.719306 0.593215 0.622324 

1 0.355428 0.388544 0.300795 0.389721 0.359774 0.384549 0.280694 0.406785 0.377676 
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 As shown in Table 6, when high-risk supply chain states (T=2) occur, the node with the highest posterior 
probability is X8 (P(X8=1 | T=2) = 40.68%), followed by X4 (P(X4=1 | T=2) = 38.97%), and thirdly X2 (P(X2=1 
| T=2) = 38.85%). 

Integrated analysis of the Bayesian network structure and the aforementioned tables reveals that X8 
(payment system stability) exerts the most substantial influence on T (supply chain risk), consistently exhibiting 
the highest probabilities across all risk levels. The network topology indicates that X8 is directly influenced by 
X6 (network failures), X5 (hardware/software failures), and X9 (customer behavior), with X6 further dependent 
on X5, and X9 affected both directly and indirectly by X4 (shelf replenishment timeliness) and X2 (supplier 
delivery punctuality). Consequently, the posterior probability distribution of X8 is quantified as follows: 
 
Table 7 P(X|X8=1) Posterior Probability 

 X2 X4 X5 X6 X9 

0 0.609497 0.605402 0.534551 0.490872 0.544846 

1 0.390503 0.394598 0.465449 0.509128 0.455154 

 
 As shown in Table 7, X6 (network failures) demonstrates the strongest causal impact on X8 occurrence, 
followed by X5 and X9. Notably, beyond X8: 
     Under T=0 (low-risk), X1 (inventory management), X2, X4, and X9 exhibit relatively higher influence 
magnitudes (≥50%) 
     For T=1 (medium-risk) and T=2 (high-risk), X2, X4, X6, and X9 dominate the risk propagation (≥50%) 
 Posterior probability analysis underscores that X8 constitutes the most critical leverage point for 
unmanned retail supply chain risk mitigation, demonstrating globally superior influence across risk transmission 
pathways. Secondary yet non-negligible nodes include X4, X2, and X9, which require integration into systemic 
risk governance frameworks. Importantly, in medium/high-risk scenarios, X6 (network failures) surpasses X9 
in impact intensity and serves as a key risk amplifier by directly interacting with X8. 
 
6. Conclusion and Discussion 

6.1 Conclusion 
First, the strategic leverage effect of procurement management (X3). As the origin point of supply chain 

operations, procurement management optimization directly governs raw material cost control, supplier 
relationship stability, and delivery punctuality. Its risk exposure triggers cascading failures in downstream 
operational processes (e.g., shelf replenishment timeliness, inventory turnover). For instance, the absence of 
elasticity clauses in procurement agreements may amplify the disruptive impacts of demand volatility, validating 
the primacy of "source governance" in startup risk management. 

Second, vulnerability transmission in technology-operations coupled systems. The elevated risk weights 
of X6 (network failures) and X7 (sensor reliability) underscore unmanned retail’s inherent vulnerability to IoT 
infrastructure dependencies—network outages paralyze payment systems and inventory synchronization, while 
sensor data inaccuracies propagate demand forecasting errors and replenishment decision failures. This reveals 
that technological robustness functions not merely as an isolated risk factor but as a latent catalyst amplifying 
operational risks. Practically, sample Enterprise S incurred catastrophic losses during its inaugural month due to 
a week-long network outage, prompting the adoption of dual-network redundancy with independent carriers—
a case empirically validating our findings. 

Third, posterior probability insights uncover two latent mechanisms: 
Nonlinear transmission of technology-dependent risks: Vulnerabilities in foundational infrastructure (e.g., 

network stability) propagate through core operational nodes (e.g., payment systems), inducing cascading failures. 
     Dynamic risk prioritization: Risk mitigation priorities shift with event severity—routine management 
should prioritize payment system optimization and supplier collaboration, whereas crisis scenarios necessitate 
enhanced network redundancy and failure response protocols. 
6.2 Discussion 

6.2.1Theoretical Discussion 
This study, through Bayesian network modeling, yields two pivotal theoretical insights: 
First, it demonstrates the asymmetry of risk factors. A single variable (e.g., X6) may simultaneously 

function as a defensive target and a crisis accelerator across risk levels, challenging the assumption of fixed risk weights 
in static models. This finding aligns with Risk Coupling Theory (Haimes, 1998) and empirically validates inventory 
tracking and consumer behavior as critical challenges in autonomous retail systems (Rukundo et al., 2025). 
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Second, it reveals technology-operation interaction effects. Failures in IoT components (X6, X7) 
indirectly induce operational decision biases (e.g., inventory mismatches) via dataflow disruptions, confirming 
that unmanned retail's core competency lies in seamless IoT-algorithm integration (e.g., RFID, computer vision) 

(Wang & Zheng, 2023). This provides novel evidence for technology-embedded risks(Markus & Tanis, 2000)。 

6.2.2 Practical Implications 
First, startups should establish graded risk response mechanisms, prioritizing payment system stability 

(X8) and supplier delivery efficiency (X2) during routine operations. Concurrently, digital twin technology can 
simulate the interactive effects of network failures (X6) and consumer behavior shifts (X9), enabling dynamic 
inventory adjustments and emergency resource allocation. 

Second, the core distinction of startup supply chain risks lies in the tripartite coupling of resource 
constraints, technological dependencies, and environmental uncertainties. Risk mitigation should prioritize event 
nodes with the highest causal weights, implementing targeted interventions to systematically reduce cross-
process risks and enhance resolution efficiency. 

Third, policymakers must accelerate inclusive infrastructure development (e.g., 5G networks, edge 
computing nodes) to mitigate asymmetric risks borne by startups due to technology spillover effects. 

6.2.3 Limitations and Future Directions 
Model limitations: The current Bayesian network relies on static conditional probabilities, failing to 

capture the long-term impacts of technological iterations (e.g., hardware upgrades in X7) on risk hierarchies. 
Future research should integrate dynamic Bayesian networks (DBN) with real-time data streams for minute-
level risk prediction. 

Sample coverage bias: The exclusive focus on startups limits insights into maturity-stage risk evolution 
patterns. Subsequent studies should incorporate mature enterprise data to explore risk dynamics and investigate 
emerging challenges like AI ethics (e.g., algorithmic biases) in technology-driven supply chains, thereby 
enriching theoretical toolkits. 
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